Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
COVID ; 1(4):751-756, 2021.
Article in English | MDPI | ID: covidwho-1580973

ABSTRACT

Studies comparing cause-of-death patterns across countries during the COVID-19 outbreak are still lacking although such studies would contribute to the understanding of the direct and indirect effect of the virus on mortality. In this report, we compare the mortality pattern observed in Italy during the first pandemic wave (March–April 2020) with that of some European countries. We calculated cause-specific, age-standardized mortality ratios (SMR) for Spain, England, and Sweden for the two mentioned months from 2016 to 2020, using already published data. Although Italy presented the highest crude overall mortality rate (267 per 100,000 population), age-adjusted ratios showed that all-cause and COVID-19 mortality in Italy were higher than in Sweden but lower than in the other two countries. Some causes had a similar increase in 2020 compared to previous years in all countries, i.e., endocrine diseases (especially diabetes), dementia and Alzheimer’s (in general mental disorders), and hypertensive heart diseases. Conversely, respiratory diseases, in particular pneumonia and influenza, increased to a greater extent in Italy. This latter result could be, in part, related to the underreporting of COVID-19 on death certificates during the first period of the pandemic, when Italy was the first European country severely hit by the virus.

2.
Front Med (Lausanne) ; 8: 645543, 2021.
Article in English | MEDLINE | ID: covidwho-1172969

ABSTRACT

Background: In Italy, during the first epidemic wave of 2020, the peak of coronavirus disease 2019 (COVID-19) mortality was reached at the end of March. Afterward, a progressive reduction was observed until much lower figures were reached during the summer, resulting from the contained circulation of SARS-CoV-2. This study aimed to determine if and how the pathological patterns of the individuals deceased from COVID-19 changed during the phases of epidemic waves in terms of: (i) main cause of death, (ii) comorbidities, and (iii) complications related to death. Methods: Death certificates of persons who died and tested positive for SARS-CoV-2, provided by the National Surveillance system, were coded according to ICD rev10. Deaths due to COVID-19 were defined as those in which COVID-19 was the underlying cause of death. Results: The percentage of COVID-19 deaths varied over time. It decreased in the downward phase of the epidemic curve (76.6 vs. 88.7%). In February-April 2020, hypertensive heart disease was mentioned as a comorbidity in 18.5% of death certificates, followed by diabetes (15.9% of cases), ischemic heart disease (13.1%), and neoplasms (12.1%). In May-September, the most frequent comorbidity was neoplasms (17.3% of cases), followed by hypertensive heart disease (14.9%), diabetes (14.8%), and dementia/Alzheimer's disease (11.9%). The most mentioned complications in both periods were pneumonia and respiratory failure with a frequency far higher than any other condition (78.4% in February-April 2020 and 63.7% in May-September 2020). Discussion: The age of patients dying from COVID-19 and their disease burden increased in the May-September 2020 period. A more serious disease burden was observed in this period, with a significantly higher frequency of chronic pathologies. Our study suggests better control of the virus' lethality in the second phase of the epidemic, when the health system was less burdened. Moreover, COVID-19 care protocols had been created in hospitals, and knowledge about the diagnosis and treatment of COVID-19 had improved, potentially leading to more accurate diagnosis and better treatment. All these factors may have improved survival in patients with COVID-19 and led to a shift in mortality to older, more vulnerable, and complex patients.

3.
Acta Diabetol ; 58(7): 919-927, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1141430

ABSTRACT

BACKGROUND: Since 2010, more than half of World population lives in Urban Environments. Urban Diabetes has arisen as a novel nosological entity in Medicine. Urbanization leads to the accrual of a number of factors increasing the vulnerability to diabetes mellitus and related diseases. Herein we report clinical-epidemiological data of the Milano Metropolitan Area in the contest of the Cities Changing Diabetes Program. Since the epidemiological picture was taken in January 2020, on the edge of COVID-19 outbreak in the Milano Metropolitan Area, a perspective addressing potential interactions between diabetes and obesity prevalence and COVID-19 outbreak, morbidity and mortality will be presented. To counteract lock-down isolation and, in general, social distancing a pilot study was conducted to assess the feasibility and efficacy of tele-monitoring via Flash Glucose control in a cohort of diabetic patients in ASST North Milano. METHODS: Data presented derive from 1. ISTAT (National Institute of Statistics of Italy), 2. Milano ATS web site (Health Agency of Metropolitan Milano Area), which entails five ASST (Health Agencies in the Territories). A pilot study was conducted in 65 screened diabetic patients (only 40 were enrolled in the study of those 36 were affected by type 2 diabetes and 4 were affected by type 1 diabetes) of ASST North Milano utilizing Flash Glucose Monitoring for 3 months (mean age 65 years, HbA1c 7,9%. Patients were subdivided in 3 groups using glycemic Variability Coefficient (VC): a. High risk, VC > 36, n. 8 patients; Intermediate risk 20 < VC < 36, n. 26 patients; Low risk VC < 20, n. 4 patients. The control group was constituted by 26 diabetic patients non utilizing Flash Glucose monitoring. RESULTS: In a total population of 3.227.264 (23% is over 65 y) there is an overall prevalence of 5.65% with a significant difference between Downtown ASST (5.31%) and peripheral ASST (ASST North Milano, 6.8%). Obesity and overweight account for a prevalence of 7.8% and 27.7%, respectively, in Milano Metropolitan Area. We found a linear relationship (R = 0.36) between prevalence of diabetes and aging index. Similarly, correlations between diabetes prevalence and both older people depending index and structural dependence index (R = 0.75 and R = 0.93, respectively), were found. A positive correlation (R = 0.46) with percent of unoccupied people and diabetes prevalence was also found. A reverse relationship between diabetes prevalence and University level instruction rate was finally identified (R = - 0.82). Our preliminary study demonstrated a reduction of Glycated Hemoglobin (p = 0.047) at 3 months follow-up during the lock-down period, indicating Flash Glucose Monitoring and remote control as a potential methodology for diabetes management during COVID-19 lock-down. HYPOTHESIS AND DISCUSSION: The increase in diabetes and obesity prevalence in Milano Metropolitan Area, which took place over 30 years, is related to several environmental factors. We hypothesize that some of those factors may have also determined the high incidence and virulence of COVID-19 in the Milano area. Health Agencies of Milano Metropolitan Area are presently taking care of diabetic patients facing the new challenge of maintaining sustainable diabetes care costs in light of an increase in urban population and of the new life-style. The COVID-19 pandemic will modify the management of diabetic and obese patients permanently, via the implementation of approaches that entail telemedicine technology. The pilot study conducted during the lock-down period indicates an improvement of glucose control utilizing a remote glucose control system in the Milano Metropolitan Area, suggesting a wider utilization of similar methodologies during the present "second wave" lock-down.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/therapy , Quarantine , Telemedicine , Adult , Aged , Aged, 80 and over , Blood Glucose Self-Monitoring/methods , Blood Glucose Self-Monitoring/standards , Blood Glucose Self-Monitoring/statistics & numerical data , Communicable Disease Control , Diabetes Mellitus/blood , Diabetes Mellitus/epidemiology , Female , Glycemic Control/methods , Glycemic Control/psychology , Glycemic Control/standards , Glycemic Control/statistics & numerical data , Humans , Incidence , Italy/epidemiology , Male , Middle Aged , Obesity/epidemiology , Obesity/therapy , Overweight/epidemiology , Overweight/therapy , Pandemics , Physical Distancing , Pilot Projects , Prevalence , Quarantine/psychology , Quarantine/statistics & numerical data , SARS-CoV-2/physiology , Socioeconomic Factors , Telemedicine/methods , Telemedicine/organization & administration , Telemedicine/standards , Telemedicine/statistics & numerical data , Urban Population
4.
J Clin Med ; 9(11)2020 10 27.
Article in English | MEDLINE | ID: covidwho-895380

ABSTRACT

Background: Death certificates are considered the most reliable source of information to compare cause-specific mortality across countries. The aim of the present study was to examine death certificates of persons who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to (a) quantify the number of deaths directly caused by coronavirus 2019 (COVID-19); (b) estimate the most common complications leading to death; and (c) identify the most common comorbidities. Methods: Death certificates of persons who tested positive for SARS-CoV-2 provided to the National Surveillance system were coded according to the 10th edition of the International Classification of Diseases. Deaths due to COVID-19 were defined as those in which COVID-19 was the underlying cause of death. Complications were defined as those conditions reported as originating from COVID-19, and comorbidities were conditions independent of COVID-19. Results: A total of 5311 death certificates of persons dying in March through May 2020 were analysed (16.7% of total deaths). COVID-19 was the underlying cause of death in 88% of cases. Pneumonia and respiratory failure were the most common complications, being identified in 78% and 54% of certificates, respectively. Other complications, including shock, respiratory distress and pulmonary oedema, and heart complications demonstrated a low prevalence, but they were more commonly observed in the 30-59 years age group. Comorbidities were reported in 72% of certificates, with little variation by age and gender. The most common comorbidities were hypertensive heart disease, diabetes, ischaemic heart disease, and neoplasms. Neoplasms and obesity were the main comorbidities among younger people. Discussion: In most persons dying after testing positive for SARS-CoV-2, COVID-19 was the cause directly leading to death. In a large proportion of death certificates, no comorbidities were reported, suggesting that this condition can be fatal in healthy persons. Respiratory complications were common, but non-respiratory complications were also observed.

SELECTION OF CITATIONS
SEARCH DETAIL